Part Number Hot Search : 
Z02W91V VICES CY230508 LC150 LF50AB NJW1165L TBT8N33 ADUC848
Product Description
Full Text Search
 

To Download IRGP420U Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Previous Datasheet
Index
Next Data Sheet
PD - 9.781A
IRGP420U
INSULATED GATE BIPOLAR TRANSISTOR
Features
* Switching-loss rating includes all "tail" losses * Optimized for high operating frequency (over 5kHz)
C
UltraFast IGBT
VCES = 500V
G E
See Fig. 1 for Current vs. Frequency curve
VCE(sat) 3.0V
@VGE = 15V, I C = 7.5A
n-channel
Description
Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier have higher usable current densities than comparable bipolar transistors, while at the same time having simpler gate-drive requirements of the familiar power MOSFET. They provide substantial benefits to a host of high-voltage, highcurrent applications.
TO-247AC
Absolute Maximum Ratings
Parameter
VCES IC @ T C = 25C IC @ T C = 100C ICM ILM VGE EARV PD @ T C = 25C PD @ T C = 100C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw.
Max.
500 14 7.5 28 28 20 5.0 60 24 -55 to +150 300 (0.063 in. (1.6mm) from case) 10 lbf*in (1.1N*m)
Units
V A
V mJ W
C
Thermal Resistance
Parameter
RJC RCS RJA Wt Junction-to-Case Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight
Min.
-- -- -- --
Typ.
-- 0.24 -- 6 (0.21)
Max.
2.1 -- 40 --
Units
C/W g (oz)
Revision 0
C-593
To Order
Previous Datasheet
Index
Next Data Sheet
IRGP420U
Electrical Characteristics @ T = 25C (unless otherwise specified) J
V(BR)CES V(BR)ECS
V(BR)CES/TJ
VCE(on)
Parameter Collector-to-Emitter Breakdown Voltage Emitter-to-Collector Breakdown Voltage Temperature Coeff. of Breakdown Voltage Collector-to-Emitter Saturation Voltage
VGE(th) VGE(th)/TJ gfe ICES IGES
Gate Threshold Voltage Temperature Coeff. of Threshold Voltage Forward Transconductance Zero Gate Voltage Collector Current Gate-to-Emitter Leakage Current
Min. Typ. Max. Units Conditions 500 -- -- V VGE = 0V, I C = 250A 20 -- -- V VGE = 0V, IC = 1.0A -- 0.47 -- V/C VGE = 0V, I C = 1.0mA -- 2.4 3.0 IC = 7.5A V GE = 15V -- 3.1 -- V IC = 14A See Fig. 2, 5 -- 2.7 -- IC = 7.5A, T J = 150C 3.0 -- 5.5 VCE = VGE, IC = 250A -- -10 -- mV/C VCE = VGE, IC = 250A 1.2 2.0 -- S VCE = 100V, I C = 7.5A -- -- 250 A VGE = 0V, V CE = 500V -- -- 1000 VGE = 0V, V CE = 500V, T J = 150C -- -- 100 nA VGE = 20V
Switching Characteristics @ T = 25C (unless otherwise specified) J
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Typ. 15 3.7 6.5 28 11 72 96 0.13 0.08 0.21 26 12 120 140 0.35 13 330 47 5.9 Max. Units Conditions 23 IC = 7.5A 5.6 nC VCC = 400V See Fig. 8 9.8 VGE = 15V -- TJ = 25C -- ns IC = 7.5A, V CC = 400V 110 VGE = 15V, R G = 50 140 Energy losses include "tail" -- -- mJ See Fig. 9, 10, 11, 14 0.28 -- TJ = 150C, -- ns IC = 7.5A, V CC = 400V -- VGE = 15V, R G = 50 -- Energy losses include "tail" -- mJ See Fig. 10, 14 -- nH Measured 5mm from package -- VGE = 0V -- pF VCC = 30V See Fig. 7 -- = 1.0MHz
Notes: Repetitive rating; V GE=20V, pulse width limited by max. junction temperature. ( See fig. 13b ) VCC=80%(V CES), VGE=20V, L=10H, R G= 50, ( See fig. 13a ) Repetitive rating; pulse width limited by maximum junction temperature. Pulse width 80s; duty factor 0.1%. Pulse width 5.0s, single shot.
C-594
To Order
Previous Datasheet
Index
Next Data Sheet
IRGP420U
20
For both:
Triangular w ave:
16
LO A D C U R RE NT (A )
D u ty cycle: 50% TJ = 125C T s in k = 9 0C G a te drive a s specified Pow er D issipation = 15W
C lamp voltage: 80% of rated
12
S quare w av e: 60% of rated voltage
8
4
Id e a l d io d e s
0 0.1 1 10 100
f, F re quency (kH z)
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=I RMS of fundamental; for triangular wave, I=I PK)
100
10 0
I C , C ollector-to-E mitter C urrent (A )
IC , C ollector-to-E mitter C urrent (A )
10
TJ = 2 5C TJ = 1 50 C
T J = 1 50 C
10
1
T J = 25 C
0.1
1 1
V G E = 15 V 20 s P UL S E W ID TH
10
0.0 1 5 10
V C C = 10 0 V 5 s P UL S E W ID TH
15 20
V C E , C o llector-to-Em itter V oltage (V)
V G E , G ate-to-E m itter V olta g e (V )
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
C-595
To Order
Previous Datasheet
Index
Next Data Sheet
IRGP420U
15
V G E = 15 V
4.5
Ma xim um DC C ollector C urre nt (A )
V G E = 1 5V 8 0 s P U LS E W ID TH IC = 15A
V C E , C ollector-to-E m itter V oltage (V)
4.0
12
3.5
9
3.0
6
2.5
I C = 7.5 A
2.0
3
I C = 4.0A
1.5
0 25 50 75 100 125 150
1.0 -60 -40 -20 0 20 40 60 80 100 120 140 160
T C , C ase Tem perature (C )
TC , C ase Tem perature (C )
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Collector-to-Emitter Voltage vs. Case Temperature
10
T he rm al R e sp ons e (Z th JC )
1
D = 0 .5 0
0 .2 0 0 .1 0 0 .0 5
PD M
0.1
0 .0 2 0 .0 1
t
S IN G L E P U L S E (T H E R M A L R E S P O N S E )
N o te s: 1 . D u ty fa c to r D = t 1 /t 2
1 t2
0.01 0.00001
2 . P e a k TJ = P D M x Z thJ C + T C
0.0001
0.001
0.01
0.1
1
10
t 1 , R e c ta n gu la r P u ls e D ura tio n (s e c )
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
C-596
To Order
Previous Datasheet
Index
Next Data Sheet
IRGP420U
700
C, C apacitance (pF)
500
Cies
400
Coes
300
V G E , G ate-to-Em itter V oltage (V )
600
V GE = 0V, f = 1MHz C ies = C ge + C gc , Cce SHORTED C res = C gc C oes = C ce + C gc
20
V C E = 4 00 V I C = 7.5 A
16
12
8
200
Cres
100
4
0 1 10 1 00
0 0 4 8 12 16
V C E , C ollector-to-E m itter V oltage (V )
Q G , Total G ate C harge (nC )
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
0 .2 2
T o ta l S w itc h in g L o s s e s (m J )
0 .2 1
To ta l S w itch in g Losses (m J)
VC C VG E TC IC
= 40 0V = 1 5V = 25C = 7.5 A
10
R G = 50 V G E = 1 5V V C C = 40 0V
1
0 .2 0
I C = 15 A I C = 7.5 A
0.1
0 .1 9
I C = 4.0A
0 .1 8
0 .1 7 20 30 40 50 60
0.01 -60 -40 -20 0 20 40 60 80 100 120 140 160
R G , G a te R e s is ta n c e ( )
W
TC , C ase Tem perature (C )
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Case Temperature
C-597
To Order
Previous Datasheet
Index
Next Data Sheet
IRGP420U
1.0
0.8
I C , C ollector-to-E m itter Current (A )
Total S w itc hing Losses (m J)
RG TC V CC VGE
= 50 = 150 C = 4 00 V = 15 V
1000
VG E E 2 0V G= T J = 12 5 C
100
0.6
10
0.4
S A FE O P E R A TING A RE A
1
0.2
0.0 0 4 8 12 16
0.1 1 10 100 1000
I C , C o llector-to -E m itte r Current (A )
V C E , Collecto r-to-E m itter V oltage (V )
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
Refer to Section D for the following: Appendix A: Section D - page D-3 Fig. 13a - Clamped Inductive Load Test Circuit Fig. 13b - Pulsed Collector Current Test Circuit Fig. 14a - Switching Loss Test Circuit Fig. 14b - Switching Loss Waveform Package Outline 3 - JEDEC Outline TO-247AC Section D - page D-13
C-598
To Order


▲Up To Search▲   

 
Price & Availability of IRGP420U

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X